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Abstract

Several natural geometric structures are de®ned that can be associated with material bodies not necessarily pos-

sessing the uniformity property, such as functionally graded materials (FGMs). By demanding that only di�erent points

have the same type of material symmetry, conditions are derived for the de®nition of some kind of homogeneity. Ó 2000
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1. Introduction

It is generally known that a uniform elastic body (Noll, 1967) is rich in geometric structure, a fact that
has been successfully exploited to model continuous distributions of dislocations and other defects, thermal
stresses, and residual stresses in general (Kondo, 1955; Billby, 1960; Kr�oner, 1960; Noll, 1967; Wang, 1967).
It has been shown (Elzanowski et al., 1990) that the basic di�erential-geometric object involved in this
description is a G-structure, whose structural group is the symmetry group of the material and whose in-
tegrability corresponds to the physical notion of homogeneity. Extensions of the theory to materials with
internal structure (Epstein and de Le�on, 1996, 1998) have brought into play higher order G-structures, but
have left the main concepts unchanged. Moreover, some anelastic evolutive phenomena, such as plasticity
and growth, can be seen (Epstein and Maugin, 1996, 1998) as precisely de®ned evolutions of the underlying
G-structure within a larger conjugate class.

Roughly speaking, a uniform body is made of the same material at all its points. Homogeneity means
that the body can be smoothly deformed so as to bring it to a homogeneous state, namely, a (global)
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con®guration such that all the points ``look'' exactly the same, as far as their constitutive relations are
concerned (for instance, they are all stress free and equally oriented). In the theory of inhomogeneities
(Noll, 1967), the uniformity property plays a central role and is, in fact, exploited from the very beginning
to yield the notion of material isomorphism for every pair of points in the body. These material isomor-
phisms generate (local) distant parallelisms, whose integrability measures their ability of becoming
straightened, as it were, into a homogeneous con®guration. It would appear, therefore, that uniformity is a
precondition of homogeneity.

Motivated by the existence of the so-called functionally graded materials (FGMs) (Yamanouchi et al.,
1990; Ilschner and Cherradi, 1995; S�anchez Herencia, 1996; Suresh and Mortensen, 1998) which are in-
trinsically non- uniform, this article addresses the question: can a non-uniform body be considered ho-
mogeneous and, if so, what is the underlying geometric object representing this property? It will be shown
that if a non- uniform body satis®es the weaker condition of having the same type of material symmetries at
every point, there already exists enough structure to de®ne some kind of homogeneity. Moreover, if the
material points recognize a preferred state (speci®cally, the case of elastic solids), then the new notion of
homogeneity can be strengthened so as to resemble the conventional one.

The concept of FGMs was ®rst proposed in 1984 as a response to the need for materials which could
serve as thermal barriers while developing low residual stresses. Another common application of FGMs is
in the ®eld of electroceramics, as actuators and carriers of energy conservation devices. In optics, FGMs
can be used to produce ®bers with a smoothly varying refractive index. The main idea behind FGMs
consists of producing a composite material whose composition varies gradually with position in the body.
Thus, FGMs are tailor-made materials developed to suit a variety of particular applications. The methods
of fabrication are, correspondingly, very diverse, and new methods are constantly proposed.

Although the mathematics needed to fully appreciate the ®ner points of the theory is far from ele-
mentary, this presentation contains few formulas or manipulations, the emphasis being placed on the
seminal ideas. An appendix contains relevant results from the theory of groups, some of which, although
elementary, are not easily found in textbooks.

2. Uniformity and homogeneity

The original theory of inhomogeneities within a purely continuum mechanical context is due to Noll
(1967) and Wang (1967). This is not to say that these authors were the ®rst to consider continuous dis-
tributions of inhomogeneities. Indeed, the works of Kondo (1955), Bilby (1960), Kr�oner (1960) and others
had already demonstrated the need for the use of highly sophisticated di�erential-geometric tools to rep-
resent various possible limiting situations of a defective crystalline lattice. The novelty of Noll's work re-
sides in a derivation of a di�erential-geometric context only on the basis of the properties of the
macroscopic constitutive equation of the body. By not appealing to the presumed knowledge of an un-
derlying atomic lattice, whose imperfections somehow tend to a density, Noll's viewpoint becomes appli-
cable to a wider class of situations, such as those resulting from residual stresses of a general nature even if
the lattice is regular or non-existent. Examples of the ®rst situation are provided by thermal stresses and by
the forming of a metal ring out of a homogeneous plane strip. Examples of the second type are non-
crystalline materials. It should be pointed out that there are other ways to model inhomogeneities (Edelen
and Lagoudas, 1988).

Naturally, in the strictly continuum viewpoint, the de®nition of inhomogeneity density can no longer be
based upon a heuristic passage to the limit of a defective lattice as the interatomic distance tends to zero.
Rather, the information about the presence or absence of inhomogeneities must be contained entirely in the
constitutive equations. The basic starting point for Noll's theory is the concept of material isomorphism. To
make matters more speci®c, consider the case of a purely elastic material with constitutive law given by
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t � t�F;X�: �2:1�
Here t represents the Cauchy stress, and F is the deformation gradient evaluated at the body point X. We

ask the question: given two body points, X1 and X2, are they made of the same material? One might think
that this question has an easy answer, namely: assume the constitutive law to be written for some reference
con®guration in cartesian coordinates, and that the two functions t1�F� � t�F;X1� and t2�F� � t�F;X2� are
identical to each other. We might then conclude that the two points are made of the same material. We
immediately see, however, that this trial de®nition reveals its own weakness: changing the reference con-
®guration, the functions will no longer be identical. Nevertheless, the following will be true: if for some
reference con®guration these functions are identical, then there must exist in the body a linear map P12

between the tangent spaces (``in®nitesimal neighborhoods'') of X1 and X2, such that

t�FP12� � t�F;X2� for all F: �2:2�
The physical meaning of P12 is the following: the material at point X1 is the same as at X2 if, and only if,

a small neighborhood of X1 can be grafted perfectly around X2, after having been deformed to the extent
P12, so that the behavior around X2 remains unchanged. The responses of X1 and X2 are thus identical,
modulo a constant preimposed deformation. The map P12 is called a material isomorphism. A body is said
to be materially uniform if all its points are pairwise materially isomorphic.

If the material isomorphisms PXY can be chosen so as to depend smoothly on X and Y, the body is said
to be smoothly materially uniform, a property often implicitly assumed.

A central point of the geometric theory results from the fact that the material isomorphisms are, in
general, not unique. Indeed, if we identify X2 with X1 in Eq. (2.2), we conclude that every material sym-
metry is a material automorphism, and vice versa. Now, let G1 and G2 denote elements of the material
symmetry groups G1 and G2, at X1 and X2, respectively. Then, given a material isomorphism P12, the map

P012 � G2P12G1 �2:3�
is also a material isomorphism. The collection P12 of all material isomorphisms is, therefore,

P12 � G2P12 � P12G1 � G2P12G1; �2:4�
and the groups themselves are conjugate by any isomorphism:

G2 � P12G1Pÿ1
12 : �2:5�

Having thus settled the question of uniformity (``same material at all body points''), we may ask: does
there exist a reference con®guration for which material isomorphisms between all pairs of points exist that
look simultaneously like the identity? If the answer to this question is ``yes'', then the body is said to be
homogeneous, and any con®guration with the above property is called a homogeneous con®guration. We
clearly see here the kinship of this notion with that of a defective lattice: if half a row of atoms is missing in
an otherwise regular lattice, no deformation can possibly restore the regular arrangement. We can picto-
rially say that in a homogeneous con®guration (if it exists) the uniform body structure has been
straightened. It may be possible, on the contrary, to straighten the body structure by chunks only, in which
case the uniform body is said to be locally homogeneous (Noll, 1967). A good example of this situation is the
metal ring already mentioned. Without actually cutting it, it is impossible to render it straight. But any
arbitrary sector of the ring can be straightened at once.

The body manifold B equipped with the collection of all possible material isomorphisms is an example
of a geometrical object known as a groupoid, whose structure group is the typical symmetry group of the
material. A concrete way to obtain a grasp of this structure consists of adopting once and for all a ®xed
body point, X0, as reference. Choosing now a basis e0 for the tanget space at X0, the collection P0;X of all
material isomorphisms between X0 and a variable point X 2 B determines a collection FG�B� of bases at
X, materially compatible with e0. This collection is a subset of the frame bundle F�B�, which consists of all
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possible bases at all points. Technically, the object obtained by reducing the frame bundle to a more re-
stricted bundle controlled by a subgroup G of the general linear group is called a G-structure. The notion of
local homogeneity discussed above turns out to be equivalent to the integrability of this G-structure.

To visualize a more de®nite measure of possible inhomogeneity, consider the case of a triclinic solid, that
is, a material with no non-trivial symmetries. In this case, one may proceed as follows: As before, a body
point X0 is chosen once and for all as reference. Since the material isomorphisms are now unique (the
symmetry group being trivial), the unique ®eld of material isomorphisms determines a unique smooth
distant parallelism on the body. We call it material parallelism, since it is ultimately dictated by the con-
stitutive equation alone. The realization of this parallelism is the following: a vector vX at X is materially
parallel to a vector vY at Y if

vY � PXY vX: �2:6�
Intutively, due to the ``transplant'' or ``graft'' operation PXY, the vector vX is transformed into the vector

vY. This parallelism uniquely determines a material connection, with Christo�el symbols given by

CJ
IK � ÿ�Pÿ1�aI

oP J
a

oXK
; �2:7�

where Greek indices represent components at X0 and Latin indices are components at X in some coordinate
systems �X a� and �X I�, respectively.

In this case, the integrability condition (and, hence local homogeneity) reduces to the vanishing of the
torsion tensor

sJ
IK � CJ

IK ÿ CJ
KI �2:8�

of the material connection. In terms of the ®eld of bases introduced above, this condition means that this
®eld is holonomic, namely, it is a natural basis of some local coordinate system.

3. Unisymmetric and homosymmetric bodies

In Section 2, the notion of the homogeneity was presented as a property that uniform bodies may or may
not possess. Accordingly, it would appear that FGMs, which are essentially non-uniform by construction,
cannot be subjected to a similar treatment. On the contrary, the presence of residual stresses, which in the
case of uniform materials manifests itself as an inhomogeneity, is of paramount importance in FGMs. In
this section, therefore, we attempt to extend the notion of homogeneity to encompass a larger class of
materials. To underline the di�erence between the two situations, we call this property homosymmetry.

De®nition 3.1. A material body is said to be unisymmetric if the material symmetry groups of its points in
one (and, therefore, in every) con®guration are pairwise conjugate.

Remark 3.2. The conjugation is understood to take place within the general linear group GL(3).

Example 3.3. A solid body with varying material properties, but fully isotropic at each point, is unisym-
metric.

Let a unisymmetric body B be placed in a ®xed reference con®guration j0�B�. If we select an arbitrary
pair of points X1;X2 of B, with symmetry groups in j0�B� denoted, respectively, by G1;G2, then, by
De®nition 3.1, there exists a linear map A between their tangent spaces
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A : TX1
�j0�B�� ! TX2

�j0�B�� �3:1�
such that

G2 � AG1Aÿ1: �3:2�
We will call such a map a symmetry isomorphism. If X2 coincides with X1, we will speak of a symmetry
automorphism. With some abuse of terminology, we will use these terms to refer both to the map between
the tangent spaces and to the group isomorphism they induce.

Remark 3.4. Physically, a symmetry isomorphism represents how a small neighborhood of X1 is to be deformed
so that its symmetry group coincides with that of X2.

If we identify for a moment X2 with X1, it is clear that, in addition to those induced by the elements of
G1, there are many other symmetry automorphisms. Indeed, any element of the general linear group which
commutes with G1 will do as a symmetry automorphism. This situation should be contrasted with the
conventional notion of material automorphism (Noll, 1967), which necessarily coincides with a material
symmetry. This greater latitude in the choice of symmetry automorphisms naturally carries over to the
choice of symmetry isomorphisms between two di�erent points. Using the result and the terminology of
Lemma A.1 (see Appendix A), we conclude:

Lemma 3.5. Given a symmetry isomorphism A between two points, Xi and Xj, the set Aij of all possible
symmetry isomorphisms is given by

Aij � ANi �NjA �NjANi; �3:3�
where Ni and Nj are respectively, the normalizers in GL(3) of Gi and Gj (see Appendix A for a de®nition of
the normalizer).

The set Aij will be referred to as the conjugator between Gi and Gj.

Remark 3.6. The normalizer includes automatically all homogeneous dilatations. Although one might be
tempted to eliminate once and for all ``undesirable'' deformations (as far as material symmetries are con-
cerned), we realize that, in the absence of any extra information beyond unisymmetry, this elimination would
not be justi®ed, or even possible (but see Remark 5.1).

Example 3.7. For the triclinic (trivial) symmetry group, the conjugator between any two points is the whole
general linear group.

We have so far obtained the following structure, A, on the material body, induced by its unisymmetry:
to every pair of points, �Xi;Xj�, there corresponds a subset Aij of GL(3) with the following properties:
1. Transitivity

Aik �AijAjk �3:4�
for any 3 points Xi;Xj;Xk;

2. Inversivity

Aij �Aÿ1
ji �3:5�

for any 2 points Xi;Xj;
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3. Group property

Aiiis a subgroup; Ni; of GL�3�:
This geometric structure is called a groupoid (Mackenzie, 1987). If the dependence of Aij on Xi and Xj is

smooth, the structure obtained is a Lie groupoid. One way to pin down a groupoid, so as to render it more
tractable, consists of choosing at one point, say X0, any particular frame f0 and use the conjugators to
de®ne all possible admissible frames at Xi by

Fi �A0if0: �3:6�

In this manner, one obtains a reduction of the principal bundle of frames of j0�B�. This reduction, con-
sisting of all admissible frames attached at each point of the body, is itself a principal bundle or, more
speci®cally, a G-structure (Bernard, 1960; Chern, 1966), whose structural group is the normalizer N0.

Remark 3.8. Note that, whereas the groupoid A depends only on the reference con®guration adopted, the
associated G-structure depends also on the choice of the frame of departure at X0. Di�erent choices, however,
lead to equivalent G-structures insofar as integrability matters are concerned.

De®nition 3.9. A unisymmetric material body is said to be �locally� homosymmetric if one �and therefore
every one� of its associated G-structures is integrable.

Integrability can be understood in the following way: Let a smooth choice of an admissible frame be
made at each point of an open neighborhood U in j0�B�. In geometric terms, this is simply a local section of
the G-structure. Obviously, having thus singled out a frame at each point, we have de®ned a distant par-
allelism on U with Christo�el symbols C, which are in general, non-symmetric. In fact, the skew-symmetric
part of C is a third-order tensor s known as the Cartan torsion of the parallelism. If the torsion vanishes, the
parallelism is said to be integrable on U, which in turn means that there exists a smooth change of reference
con®guration rendering it the ordinary Cartesian parallelism of E3. If this can be done for some local
section of every open set of a convering of j0�B�, the G-structure is integrable. Physically, this means
that there exist special reference con®gurations (henceforth called homosymmetric con®gurations) in which
entire chunks of the body (or, possibly, the whole body) have identical (not just conjugate) symmetry
groups.

Remark 3.10. Ascertaining the integrability of a G-structure is not an easy task, since the choice of local
section has considerable freedom within the structural group at each point. Only when the structural group is
discrete, the choice is unique. This fortunate situation, however, never arises in unisymmetry considerations,
since the normalizer cannot be discrete.

Example 3.11. A triclinic body is automatically homosymmetric because its structural group is the whole of
GL(3), so that in any con®guration, a trivial global section is available.

4. Unisymmetric homogeneity of elastic solids

If the only information available concerning the mechanical response of a body is its unisymmetry, then
nothing more can be said beyond the treatment of the previous section. If, however, the body points are
known to exhibit preferred states, then a much sharper characterization can be devised. For speci®city, we
consider here the case of elastic solidity, whereby each point has a natural or relaxed state de®ned uniquely
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to within an arbitrary rotation. 1 Moreover, the material symmetry group of a natural state is a subgroup of
the orthogonal group.

By virtue of its solidity, and regardless of uniformity or even unisymmetry, a reference con®guration of
an elastic body is endowed with a unique Riemannian metric compatible with its natural states. Indeed, the
dot product of two tangent vectors at a point is, by de®nition, the ordinary cartesian dot product of their
``relaxed'' images in the natural state. The rotational degree of freedom leaves this result una�ected. Let the
curvature of this Riemannian metric vanish identically. That would mean that the body can (chunkwise, at
least) be brought to a reference con®guration at which each point is in a natural state. Such con®gurations
will be called relaxed or natural con®gurations.

De®nition 4.1. An elastic solid body is called (locally) relaxable if its intrinsic Riemannian metric has
vanishing curvature.

Remark 4.2. Relaxability would correspond, in the context of uniform materials, to the notions of curvilinear
or contorted aeolotropy, whereby the stresses can be relieved, but a rotation is still needed to e�ect the material
isomorphism between points. Here, this concept emerges without any further material assumption, beyond that
of solidity.

Let us now assume that the solid body is also unisymmetric. Several combinations of the two inde-
pendent geometric structures (the G-structure of unisymmetry and the Riemannian metric of solidity) can
occur, the most stringent of which is contained in the following:

De®nition 4.3. An elastic solid body is (locally) unisymmetrically homogeneous if it is relaxable and homo-
symmetric, and if the natural con®gurations of the neighborhoods are also homosymmetric con®gurations.

In other words, unisymmetrical homogeneity corresponds to the mutual compatibility of the two geo-
metric structures.

Example 4.4. A relaxable triclinic body is automatically unisymmetrically homogeneous. This example is an
extreme case in which the di�erence between ordinary homogeneity and unisymmetrical homogeneity is
very obvious and as wide as possible.

Lemma 4.5. A relaxable isotropic body is automatically unisymmetrically homogeneous.

Proof. In a relaxed con®guration of a neighborhood, all the symmetry groups coincide with the orthogonal
group, so that the symmetry isomorphisms can be chosen as the identity. �

This lemma shows that, for fully isotropic elastic solids, homogeneity (whether of the old or the new
vintage) is synonymous with relaxability. In general, in cases such as transverse isotropy and orthotropy,
relaxability and unisymmetrical homogeneity are not the same.

Example 4.6. It is easy to imagine a non-uniform elastic solid body made of transversely isotropic points
which is at a globally relaxed con®guration, but one in which the main axes of transverse isotropy are not
parallel. Such a body can then legitimately be said to contain distributed dislocations.

1 Strictly speaking, elasticity and solidity do not by themselves imply the existence of a natural state (Truesdell and Noll, 1965).
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We now address the question as to whether and how the simultaneous compatible integrability of the
two geometric structures can be assessed by the integrability of just one structure to be de®ned. For each
Xi 2 j0�B�, let

Ki : TXi�j0�B�� ! R3 �4:1�
denote a map bringing Xi to a natural state. As already mentioned, such maps are uniquely de®ned up to an
arbitrary rotation. Given two points Xi and Xj with conjugator Aij, the conjugator A�ij between the cor-
responding natural states is given by

A�ij � KjAijKÿ1
i ; �4:2�

as clari®ed in the following commutative diagram

Each element �A of Aij conjugates two subgroups, �Gi and �Gj, of the orthogonal group. According to Lemma
A.2, therefore, to each �A there corresponds a unique orthogonal �Q which produces the same conjugations
�A. This fact can be obviously used to de®ne an equivalence relation in A�ij, whereby two elements are
equivalent if they have the same orthogonal component in the polar decomposition. We denote by A�0

ij the
corresponding quotient space. Recalling that A�ij is given by A�N�Gi�, we conclude that A�0

ij is equivalent to
�QN0��Gi�, where N0��Gi� is the normalizer of �Gi within the orthogonal group. Pulling back this construction
to j0�B�, we obtain the reduced conjugator

A0
ij � Kÿ1

j A�0
ijKi; �4:3�

which gives rise to a new, reduced, groupoid with structural group N0��Gi�. It is the integrability of this
object (or any of its associated G-structures) which represents the notion of unisymmetric homogeneity, as
shown in the following proposition:

Proposition 4.7. A unisymmetric elastic solid body is unisymmetrically homogeneous if, and only if, its as-
sociated reduced groupoid A0 is integrable.

Proof. Since A0 �A, the integrability of A0 implies that of A and, by De®nition 3.9, the existence of a
homosymmetric con®guration, v0 say, for a neighborhood U, of each point. Singling out a point
X0 2 v0�U�, let K0 denote a map bringing it to a natural state. We now change the con®guration v0�B� by a
homogeneous (i.e., constant gradient) deformation with gradient equal to K0. This change of con®guration
does not alter the (identity) parallelisms. The groupoid A0 conjugates, of course, to a new groupoid which
still satis®es Eqs. (4.2) and (4.3). It follows that all points in U must be in the natural state. Conversely, let
the body be unisymmetrically homogeneous. There exists then a con®guration for which all the maps Ki are
orthogonal and, simultaneously, all the unisymmetrical isomorphisms (parallelisms) are trivial. This implies
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that the natural state of two points, Xi and Xj, in this con®guration can be related by the orthogonal tensor
Qij � KjIKÿ1

i � KjKT
i . The reduced groupoid in this (and so in every) con®guration is obviously integrable

by construction. �

Remark 4.8. Unlike the normalizer N of the general case, the normalizer N0 may be discrete, so that, in the
case of elastic solids, there will be instances for which the assessment of the integrability, or lack thereof, will
turn out to be straightforward.

5. Further considerations and examples

We have obtained a gradation of geometric structures for an elastic solid which we summarize as fol-
lows:

The analysis of a general non-uniform body has not been attempted (for an early attempt in geometric
characterization of non-uniformity see Elzanowski and Epstein, 1985). Nevertheless, if the body enjoys the
rather weak property of unisymmetry (same ``type'' of material at all points), then a geometric object al-
ready exists for its description: the groupoid A with structure group N�G�, the normalizer of the typical
symmetry group. This is a rather large structural group, allowing for a considerable freedom in the choice
of admissible frames. The integrability of this object, guaranteeing the existence of con®gurations whereby
the groups become identical at all points of a neighborhood, would allow for the comparison of points by a
wide class of deformation, including dilatations. For special materials, such as elastic solids, some of these
deformations may be deemed ``undesirable'', since they would imply the coexistence of points in natural
and stressed states even in the privileged con®gurations, guaranteed by the integrability condition. For
elastic solids, therefore, a subgroupoid A0 can be constructed with structural group N0�G�, the normalizer
of G within the orthogonal group. The integrability of this new object eliminates the unwanted situations,
since it ensures the existence of fully relaxed con®gurations in which the groups coincide at all points. The
non- integrability of A0 can thus be seen as an indication of the existence of distributed dislocations (or
other defects possibly causing residual stresses) in a non-uniform body. Finally, if the body happens to be
uniform, the classical notion of homogeneity is recovered as the integrability of the smaller groupoid A00

with structural group G. As far as this smaller structure is concerned, some of the previous isomorphisms
permitted by A0 may be expected to be inadmissible. This situation will arise if there exist orthogonal
automorphisms of a natural state which do not belong to the symmetry group. In other words, the criterion
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of two points having just the same symmetry group may not be as ®ne as the criterion of having the same
constitutive equation. It is quite remarkable, though, that for many types of solids this is not the case, and
both criteria give rise to the same measure of inhomogeneity. To clarify these matters, a few examples will
be studied.

Remark 5.1. If, for some physical reason, it were possible to choose for each material point a preferential
density, then another (larger) groupoid could be constructed, whose structural group is the unimodular part of
the normalizer. Its integrability would measure the possibility of achieving a con®guration in which each point
is at its preferential density while the symmetry groups are identical within a neighborhood. The mathematical
possibility also exists of de®ning an intermediate groupoid based upon the centralizer, rather than the nor-
malizer, of the symmetry group. Its physical signi®cance, as well as that of its integrability, are open to in-
terpretation.

Remark 5.2. Given a hyperelastic constitutive equation W � W �F;X�, where W is the stored energy density
and F is the deformation gradient at the point X, the mere requirement of smoothness of W with respect to X

already has implications as to the conjugability of the symmetry groups at di�erent points. It is to be expected
that the symmetry groups must turn out to conjugate almost everywhere. This di�cult analytical question
deserves further study.

In the remainder of this section, we consider examples of homogeneity and unisymmetric homogeneity
of some classes of elastic solids. From the results listed in the Appendix A, it follows that for the fully
isotropic class the normalizer N0 within the orthogonal group coincides with the whole group. From the
physical point of view, this means that there is no di�erence between ordinary (i.e., uniform) homogeneity
and unisymmetrical homogeneity. In other words, were we to have established that a body is unisym-
metrically homogeneous on the basis of the conjugability of the symmetry groups and the natural states of
its points, the awareness that the body is actually uniform would not add any extra information as far as the
presence of continuous distributions of inhomogeneities is concerned.

The same result is true for the only other continuous symmetry group of an elastic solid, corresponding
to transverse isotropy: the group of rotations about a ®xed axis. As shown in Appendix A, the orthogonal
normalizer in this case, coincides with the group itself, and so there are no extra degrees of freedom left as
compared with the case of ordinary (uniform) homogeneity. It is quite remarkable that in these two special
cases (full and transverse isotropy), as far as an elastic solid body is concerned, there is no need for the body
to be made of the same material at all points in order to de®ne and determine the presence of continuous
distributions of inhomogeneities.

We next consider a variety of classes, all of which we have encompassed under the designation of n-
agonal systems. They consist of material points whose symmetry group in a natural state consists of the
rotations generated by successive applications of a rotation of magnitude 2p=n (for some integer n > 1)
about a ®xed axis. We have shown in Appendix A that the orthogonal normalizer of these groups is the
same as that for transverse isotropy, namely, the group of all rotations about the axis. The physical
consequence of the fact that the orthogonal normalizer is larger than the symmetry group is the following:
If, having determined that the body is unisymmetrically homogeneous, we become aware that it is also
uniform, then the possibility exists that, although the main axes of rotation are all parallel in the relaxed
con®guration, a further adjustment is needed to render the symmetry isomorphisms material isomorphisms.
This adjustment may only consist of rotations about the main axis at each point and, therefore, will be
generally impossible without stress.

To consider the case of orthotropic materials, we discuss now the rhombic system, whose symmetry
group consists of just four elements (or eight, if we count those with negative determinant), as detailed in
Appendix A. In this case, the orthogonal normalizer coincides with the group itself. Here we have,
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therefore, an instance in which the structural group turns out to be discrete and, as a consequence, there is
no di�erence between ordinary (uniform) homogeneity and unisymmetrical homogeneity in this important
category of materials. Moreover, the condition of integrability reduces to the vanishing of the torsion of the
unique distant parallelism available.

Finally, as already pointed out, the triclinic system exhibits an orthogonal normalizer which is as large as
possible, namely, the whole orthogonal group. Physically, this means that unisymmetrical homogeneity can
only detect relaxability, whereby the di�erent points of a neighborhood can be simultaneously brought to a
natural state, but an arbitrary rotation will, in general, be needed to bring them into material isomorphism.
As in the case of n-agonal symmetry, this extra rotation will in general be impossible without stress (for a
two- dimensional setting, see Epstein, 1987). Thus, there is an essential di�erence between the two kinds of
homogeneity in triclinic materials.
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Appendix A

Given a group H, a ®xed element H 2H, and a subset G0 �H, the subset

G1 � HG0Hÿ1 � fG 2H j G � HG0Hÿ1 for some G0 2 G0g �A:1�
is called the conjugate of G0 by H. The conjugate of a subgroup is again a subgroup.

Two conjugate subgroups are isomorphic, since a conjugation is always bijective (one-to-one and onto)
and preserves the group multiplication and the taking of inverses. If G1 � G0, the isomorphism is called an
automorphism. Conjugation of a subgroup by any one of its own elements is always an automorphism
called an inner automorphism.

The normalizerN�G� of a subgroup G �H consists of all the elements of H which, by conjugation,
produce automorphisms of G:

N�G� � fH 2H j HGHÿ1 2 G: for all G 2 Gg: �A:2�
This condition can be brie¯y written as:

HG � GH; �A:3�
so we may say that the elements of the normalizer commute with the subgroup. This should not be confused
with those elements of H which commute with every element of G. They constitute the centralizer C�G� of
G in H:

C�G� � fH 2H j HGHÿ1 � G for every G 2 Gg: �A:4�
It is not di�cult to verify that both N�G� and C�G� are themselves subgroups of H, and that the nor-
malizer includes both the original subgroup and its centralizer, viz:

G [ C�G� �N�G�: �A:5�
This union can, and will, also be understood in the sense of subgroup union, which consists not just of the
elements belonging to either subgroup, but also of all the elements of H obtained by group multiplication
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of any ®nite number of elements from both subgroups taken in any order. Thus, the union turns out to be a
subgroup. In our case, because of the commutative property of the centralizer, only one factor is needed
from each group, i.e.,

G [ C�G� � fH 2H j H � GC for some G 2 G and for some C 2 C�G�g: �A:6�

Lemma A.1. Given two conjugate subgroups, G0 and G1, of a group H, and given any particular conjugation
M 2H, the set M of all possible conjugations between the sub-groups is given by

M �MN�G0� �N�G1�M �N�G1�MN�G0�: �A:7�
(The set M will be called the conjugator from G0 to G1.)

Proof. By direct veri®cation, using the de®nition of normalizer. �
We may say, then, that the degrees of freedom a�orded to a conjugator from a subgroup to any other,

are measured at least by the subgroup itself and its centralizer. In general, however, the normalizer is
strictly larger than the union of the subgroup with its centralizer.

We are particularly interested in the application of these concepts to the general linear group in three
dimensions, GL(3), represented by all non-singular matrices of order 3. Clearly, the centralizer of any
subgroup of GL(3) contains at least all scalar matrices, that is, scalar multiples of the identity matrix I. Of
particular relevance to our considerations are the subgroups of the orthogonal group O�3� � GL�3� de®ned
as

O�3� � fQ 2 GL�3� j Qÿ1 � QTg: �A:8�
The subgroups of O�3� enjoy the remarkable property embodied in the following lemma.

Lemma A.2. Let G1;G2 � O�3� be orthogonal subgroups. Then, every isomorphism between G1 and G2 by
conjugation with an element H 2 GL�3� is also an orthogonal isomorphism, namely, a conjugation by some
element R 2 O�3�. Moreover, R is uniquely determined by H through polar decomposition.

Proof. This lemma can be proved in at least three di�erent ways: by representation in an eigenbasis of the
symmetric polar component, by a clever use of the uniqueness of polar decomposition (as done by Coleman
and Noll, 1964; see also Truesdell and Noll, 1965), or, as in what follows, by the use of the Cayley±
Hamilton theorem. First, we note that, since the elements of G2 are orthogonal matrices, we must have for
every Q 2 G1:

�HQHÿ1�ÿ1 � �HQHÿ1�T; �A:9�
whence

�HTH�Q�HTH�ÿ1 � Q for all Q 2 G1: �A:10�
In other words, the symmetric positive-de®nite matrix HTH belongs to the centralizer of G1. But by the
polar decomposition theorem, there exists a unique orthogonal matrix R and a unique positive-de®nite
symmetric matrix S such that H � RS. Therefore,

S2 � STS � HTRRTH � HTH 2 C�G1�; �A:11�
which means that S2 commutes with every element of G1. We need to show that S itself has the same
property. By the theorem of Cayley±Hamilton, S satis®es the identity:

ÿS3 � I1S2 ÿ I2S� I3I � 0; �A:12�
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where I1; I2; I3 are the three invariants of S, all of which are strictly positive. Since S2Q � QS2 for every
Q 2 G1, it follows that

SQ�S2 � I2I� � S3Q� I2SQ � �I1S2 � I3I�Q
� Q�I1S2 � I3I� � QS3 � I2QS � QS�S2 � I2I�: �A:13�

But I2 being strictly positive, the matrix S2 � I2I cannot be singular, which implies that SQ � QS, as was to
be proved. Therefore,

HQHÿ1 � RSQSÿ1RT � RQSSÿ1RT � RQRT: � �A:14�

We now explicitly describe the normalizer and centralizer of a few orthogonal subgroups of interest in
applications to solids. In all cases, it turns out that the normalizer is exactly equal to the group union of the
subgroup itself with its centralizer.

Remark A.3. It is straightforward matter to show that a necessary and su�cient condition for this to be the
case is that every automorphism, be also an inner automorphism, a condition stronger than that used in the
previous lemma.

Example A.4 (The orthogonal group O�3�). Centralizer
An element C of the centralizer of O�3�must, by de®nition, commute with every orthogonal matrix Q. In

particular, choosing Q alternatively as the diagonal matrices

Q � diag�1;ÿ1;ÿ1�; diag�ÿ1; 1;ÿ1�; diag�ÿ1;ÿ1; 1�; �A:15�
we deduce that C must be diagonal. Choosing now

Q �
1 0 0
0 0 1
0 ÿ1 0

0@ 1A; 0 0 1
0 1 0
ÿ1 0 0

0@ 1A; 0 1 0
ÿ1 0 1
0 0 1

0@ 1A;
it follows that C must be a scalar matrix. Further restrictions cannot be expected, since the centralizer
automatically contains all scalar matrices.

Normalizer
By the same argument as in Lemma A.2, we conclude that if N is in the normalizer, then NTN is in the

centralizer. Therefore, NTN is a positive scalar matrix and so is its square root, S. By polar decomposition,
there exists an orthogonal matrix R such that N � RS. Vice versa, if N � RS for some orthogonal R and
some scalar matrix S, then N conjugates O�3� onto itself, which shows that the normalizer consists exactly
of all products of orthogonal and scalar matrices. Finally, since the only scalar orthogonal matrices are I

and ÿI, the orthogonal part of the normalizer coincides with the orthogonal group.

Example A.5 (The group Ox of rotations about a fixed axis x). Centralizer Ox can be represented by all
matrices of the form:

Q �
1 0 0
0 cos h sin h
0 ÿ sin h cos h

0@ 1A; 06 h < 2p:

First, choosing Q � diag�1;ÿ1;ÿ1�, we obtain that C 2 C�Ox� must be of the form
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C �
a 0 0
0 b c
0 d e

0@ 1A a; b; c; d; e 2 R:

Now using an arbitrary Q from the group, it follows that b � e, and c � ÿd. No further reduction is
possible, so the most general form of an element in the centralizer is

a 0 0
0 b c
0 ÿc b

0@ 1A; a; b; c 2 R:

Normalizer
Speci®cally, for each h there must exist a / such that

a11 a12 a13

a21 a22 a23

a31 a32 a33

0@ 1A 1 0 0
0 cos h sin h
0 ÿ sin h cos h

0@ 1A � 1 0 0
0 cos / sin /
0 ÿ sin / cos /

0@ 1A a11 a12 a13

a21 a22 a23

a31 a32 a33

0@ 1A;
where aij denote the entries in a matrix A in the normalizer.

By polar decomposition in a two-dimensional subspace, and using the arguments of the previous lemma,
we conclude that the lower right submatrix of A must be the product of a positive scalar matrix times an
orthogonal matrix in two dimensions. Note that / cannot be identically zero for all h. Operating on the
remaining submatrices, one obtains that necessarily a12 � a13 � a21 � a31 � 0. That is, the most general
form of matrix A of the normalizer is

A �
a 0 0
0 k cos h k sin h
0 ÿk sin h k cos h

0@ 1A; a; h 2 R; k 2 R�:

But this is precisely the form of the general matrix of the centralizer (with the identi®cation k2 � b2 � c2�. In
this case, therefore, the normalizer coincides with the centralizer. The orthogonal part of the normalizer
coincides with the original group.

Example A.6 (The n-agonal groups). We call n-agonal the group of rotations generated by a rotation of
magnitude 2p=n (with n an integer greater than 1) about a ®xed axis x.

Centralizer:
We distinguish the two cases n � 2 and n > 2. For n � 2 we obtain by direct calculation

C �
a 0 0
0 b c
0 d e

0@ 1A; a; b; c; d; e 2 R:

For n > 2 we obtain

C �
a 0 0
0 b c
0 ÿc b

0@ 1A; a; b; c;2 R:

Normalizer:
In all cases, the normalizer is equal to the corresponding centralizer. The orthogonal part of the nor-

malizer is the group of all rotations about x.
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Example A.7 (The rhombic group). The rhombic group can be represented by the four matrices

Q1 � I; Q2 �
1 0 0
0 ÿ1 0
0 0 ÿ1

0@ 1A; Q3 �
ÿ1 0 0
0 1 0
0 0 ÿ1

0@ 1A; Q4 �
ÿ1 0 0
0 ÿ1 0
0 0 1

0@ 1A:
This is a discrete Abelian group. A direct computation of all the possibilities reveals that both the cen-
tralizer and the normalizer consist of all the diagonal matrices (not necessarily scalar). The orthogonal
normalizer coincides with the original group.
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